Prof. J. Warnatz, Dr. W. Bessler

Aufgabe 1:

Gegeben seien drei Funktionen mehrerer Veränderlichen

a.)
$$\vec{f}(\vec{x}) = (x_1, x_2, x_3)$$

b.)
$$\vec{f}(\vec{x}) = \left(\ln x_2, \sqrt[3]{x_1 x_2}, \frac{1}{|\vec{x}|}\right)$$

c.)
$$\vec{f}(\vec{x}) = (x_1^2 + 3x_2, \exp(|\vec{x}|), x_1x_3 + 3)$$

Hier steht \vec{x} für (x_1, x_2, x_3) . Berechnen Sie die Divergenz, Rotation und Funktionalmatrix der drei Funktionen.

Aufgabe 2:

Der Wert einer mehrdimensionalen Funktion lässt sich analog der eindimensionalen Taylor-Entwicklung in linearer Näherung mit Hilfe der Jacobi-Matrix J druch

$$\vec{f}(\vec{x}) = \vec{f}(\vec{x}_0) + J(\vec{x} - \vec{x}_0)$$

berechnen. Vergleichen Sie für die Funktion c.) der Aufgabe 1 die Ergebnisse einer analytischen Berechnung von $\vec{f}(1,0,1)$ mit den linearen Näherungen, die sich für $\vec{x}_0=(0,1,1)$ und $\vec{x}_0=(1,1,0)$ ergeben. Berechnen Sie hierzu die Absolutwerte der Abweichung zwischen Näherung und analytischer Lösung. Welche Näherung ist besser?

Aufgabe 3:

Ein Stoff A kann auf zwei Wegen in einen Stoff D reagieren.

1.
$$A \longrightarrow B \longrightarrow D$$

2.
$$A \longrightarrow C \longrightarrow D$$

Die Reaktionsraten sind durch k_{AB} , k_{BD} , k_{AC} und k_{CD} gegeben. Es ist davon auszugehen, dass zum Zeitpunkt 0 keines der Stoffe B, C und D vorhanden ist.

- a.) Erstellen Sie mit Hilfe der Jacobi-Matrix eine Gleichung, welche die zeitliche Änderung der Konzentrationen der Stoffe wiedergibt.
- b.) Berechnen Sie Eigenwerte und Eigenvektoren der Jacobi-Matrix. Nehmen Sie dazu an, dass sich $k_{AB}:k_{BD}:k_{AC}:k_{CD}$ verhält wie 1:2:3:3.

Aufgabe 4:

Das Volumen V_K der Kugel (Radius R) und des Zylinders (Radius R, Höhe H) ist durch Integration zu bestimmen. Berechnen Sie dazu das Integral $V = \int_{V_K} dx \, dy \, dz$. Lösen Sie die Aufgabe durch Koordinatentransformation in ein Koordinatensystem, welches dem Körper entsprechende Symmetrien aufweist. Schreiben Sie explizit die für den Koordinatenwechsel verwendete Funktionaldeterminate auf.