EI M5

2010-11

MATHEMATIK

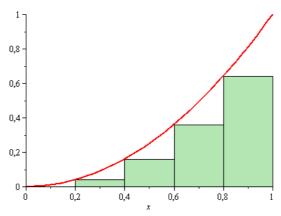
$\sum_{\substack{k=1\\4}}^{5} (k/5)^2 \cdot 1/5$ $\sum_{k=0}^{4} (k/5)^2 \cdot 1/5$

Stunde vom 11.02.2011

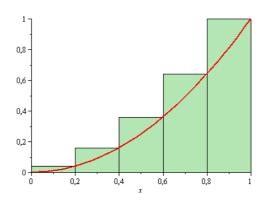
In dieser Doppelstunde haben wir das "Riemannsche Flächenintegral" eingeführt.

Wie entsteht ein Integral?!

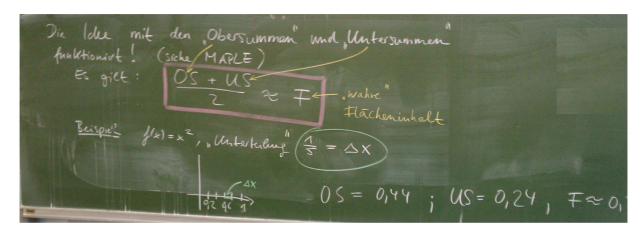
Wir suchen die exakte Fläche unter der Kurve $y=x^2$ zwischen x=0 und x=1. Wie geht das? Eine erste Idee ist diese hier:



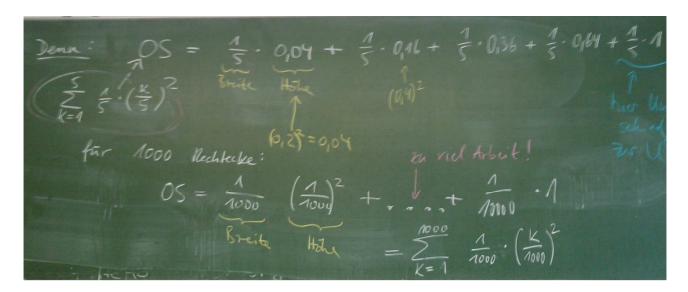
Hier ist die grüne Fläche sicher zu klein! Es fehlen die weißen "gebogenen Dreiecke"! Andersherum haben wir zuviel grüne Fläche:



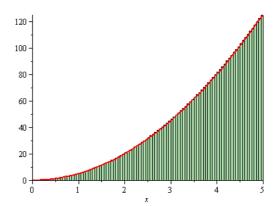
Der simpelste "Trick" überhaupt hilft uns hier weiter; einmal das "Bissl" zuviel, einmal zu wenig. Wenn wir unsere beiden Flächeninhalte "mitteln" (addieren und dann durch 2 teilen), heben sich das "Zuwenig" mit dem "Zuviel" doch ziemlich exakt auf?!



Für unseren Fall haben die Rechtecke immer die Breite 0,2 und die Höhe variiert; es ist immer $f(a)=a^2$, wobei a gerade die entsprechende "Stützstelle" ist, also einer der x-Werte, durch die die Rechtecksflächen begrenzt sind. Für die Obersumme (OS):



Für die Untersumme gilt Ähnliches. Mit Maple kann man das ganz bequem auswerten. Für $y=x^2$ und 5 Stützen (also x=0, x=0,2 bis x=1) finden wir für den von x=0 und x=1 begrenzten Flächeninhalt unter dieser Parabel OS=0,44. Für die Untersumme US=0,24. Macht im Schnitt F=0,34. Der echte Flächeninhalt ist übrigens 1/3, das ist schon ganz gut. Für eine feinere Unterteilung werden auch die Fehler kleiner:



Hier ist die Obersumme für 100 Stützen gezeigt. OS und US nähern sich an, gleichzeitig gilt aber:

US< echter Flächeninhalt < OS.

Im Grenzfall einer unendlich feinen Unterteilung MUSS dann US=OS gelten; der Fehler wird ja Null. Dann ist aber auch F, der echte Flächeninhalt, gerade gleich US bzw. OS: US=F=OS. F ist dann das "Flächenintegral".

Wie notiert man ein Integral?!

Die Notation kommt von der eingeführten Summenschreibweise. Diese ist ja von dieser Art:

$$\sum_{alle\ Rechtecke} H\ddot{o}he \cdot Breite = \sum_{k=1}^{n} f(x_k) \cdot \Delta x_k$$

Wobei hier k die vielen Rechtecke "durchzählt". n ist die Anzahl der Stützstellen ist und begrenzt damit das k, bei uns war n=5. $f(x_k)$ sind die y-Werte, die zu dem jeweils passenden x_k gehören. Bei uns waren die x_k einfach k/n und das macht man meistens so. Exakter also 1/5, 2/5, ..., 5/5=1. Auch die Δx_k waren bei uns sehr einfach; das ist die Breite und die war immer 1/n=1/5=0,2. Mit unserem n=5 und den Breiten von 0,2 ist ja schon klar, dass unsere zu berechnende Fläche von 0 bis 1 geht. Daher notiert man das nicht extra.

Für den Grenzfall einer unendlich feinen Verteilung notiert man jetzt:

$$\sum_{k=1}^{n} f(x_k) \cdot \Delta x_k \text{ wird } zu \int_0^1 x^2 dx$$

Das drückt aus, dass man die Fläche zwischen der x-Achse und der Funktion $y=x^2$ berechnet, die von x=0 und x=1 begrenzt wird. Wie das genau geht, sehen wir noch!

Gibt es negative Flächeninhalte?!

Wir werden sehen, dass es Fälle gibt, bei denen die Funktionswerte der "Balken" negativ sind (die Balken liegen unterhalb der x-Achse). Ist hier die Fläche jetzt negativ?! Das kommt etwas auf den Standpunkt an; man kann sagen, dass es grundsätzlich NUR POSITIVE Flächeninhalte geben kann. Oder man lässt auch -2 als Länge zu. Dann schon. Wir besprechen das in der kommenden Woche genauer!

Gibt es eine einfachere Möglichkeit, Flächen unter Kurven zu berechnen?! Dazu mehr in der kommenden Woche!